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Abstract

An analytic solution is given for the electromagnetic problem of a lossy dielectric cylinder of infinite length, irradiated by a

circularly polarized radiofrequency (RF) magnetic field; the NMR-active components of the field inside the cylinder are projected

out by transforming the RF Hamiltonian to the rotating frame and retaining only those terms independent of time; it is noted that

the resulting cartesian field components are required to be real. The squared magnitude of the NMR-active fields are then used to

calculate the gradient-recalled images of the cylinder, for small tip angles of the magnetization; and the result is shown to predict

almost quantitatively the intensity patterns of experimental proton images at 3.0 and 4.0T, in a cylindrical phantom of radius

9.25 cm, filled with 0.05M aqueous NaCl. In particular, the artifactual brightening at the center of the recorded image is con-

vincingly reproduced in a simulation, whose underlying model excludes wave propagation along the direction of the cylinder axis.

Formation of the artifact is explained in terms of the focussing of the RF magnetic field at the center of the cylinder, as illustrated by

contour plots showing the time evolution of the rotating flux. An extended electromagnetic model—having the dielectric cylinder

enclosed in a long, shielded volume resonator (e.g., of bird cage type)—is then sketched. The mathematical details appear in

Appendix A; and the simulated images are shown to be virtually indistinguishable from those of the simpler original model. The

theory of the Q, or quality factor, of the dielectric cylinder—considered itself as a resonant object—is developed for the enclosed

cylinder model, where flux containment by the shield permits an unambiguous treatment of both the stored energy and the radiative

losses. This is extended to treat the Q of a lossy dielectric sphere without shielding. Further plots of flux contours are given for

the sphere, excited at 208MHz with a uniform circularly polarized field, as well as by a surface coil, and for the enclosed cylinder in

the range 140–160MHz. It is then argued that the center brightening artifacts in magnetic resonance images are due to the

underdamped dielectric resonance of the sample, i.e., at Q > 0:5, while the overdamped condition, Q < 0:5, leads to exclusion of flux

from the center, i.e., to the classic skin effect. The term �dielectric resonance� is shown to require careful interpretation for mixed-

mode excitation, such as occurs with a surface coil. An extended reciprocity formula for NMR reception, valid for an arbitrary

electromagnetic Green�s function, is also given in Appendix B.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

Many investigators, but R€oschmann in particular

[1–3], have called attention to an intensity artifact—
typically brightening at the center—observed in mag-

netic resonance images of objects whose dimensions are

comparable to the radiofrequency (RF) wavelength

[4–11]. These distortions arise from focussing of the RF

magnetic flux lines, and are attributed by R€oschmann
qA preliminary account of this work appeared in the Proceedings

of International Society for Magnetic Resonance in Medicine, Denver,

2000.
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quite generally to dielectric resonance [2,3]. Although

often suppressed by preferential saturation, the bright-

ening artifacts (as we shall call them), are typically no-

ticeable in proton images of the human head, acquired
with volume resonators at static field strengths of 4.0 T

and above; they are pronounced, even dramatic, at

7.0 T, where the Larmor frequency approaches 300MHz

[9]. Since radiofrequency propagation is strongly

damped by the high conductivity typical of biological

samples [11], the question has been raised, whether true

resonances are in fact observed, and it has been has

argued [8] that field focussing and dielectric resonance
are not identical.

While R€oschmann [2,3], has stressed the importance

of the �eigen-fields� of the irradiated dielectric body,
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other workers have emphasized its interaction with the
irradiating resonator, and have proposed that cylindri-

cal volume resonators may be designed to manipulate

the axial propagation constant, and thereby improve RF

homogeneity [4,5,7], effectively cancelling the artifact.

Here, we present examples of theoretical images with

center brightening, calculated in the transaxial plane of

a lossy dielectric cylinder, at 128 and 170MHz. The

calculations are based largely on the electromagnetic
model of the cylinder in free space, used by Glover et al.

in their seminal study of linear and quadrature excita-

tion [12], and later elegantly reprised by Tofts [13]; the

essentials are also given by Landau and Lifschitz [14].

Elaboration of this model, to include the presence of a

shielded radiofrequency antenna (or probe) enclosing

the dielectric, does not noticeably change the results. To

select the proper components of the rotating RF field,
we introduce a projection algorithm, based upon

transformation of the RF Hamiltonian to the rotating

frame. The calculations rigorously exclude axial propa-

gation effects, and yet faithfully (almost quantitatively)

reproduce the essential features of experimental images,

recorded under the same conditions used in theory.

While the results do not exclude the suppression of the

brightening artifact by suitably designed excitation, they
do appear to disallow a significant role for the axial

propagation constant in cylindrical volume resonators.

We also present a series of calculations, showing how

the RF flux contours inside a dielectric depend upon the

Q or quality of factor of the specimen, itself considered

as a resonant object. The enclosed dielectric model (vide

supra) affords a rigorous development of the theory for

the cylinder, due to spatial confinement of the scattered
fields and the restriction of radiative losses to dissipation

in the shield; a satisfactory theory is then given by

analogy for the dielectric sphere, although in less com-

pact form. Calculated flux contours are presented for

the cylinder at in the range of 140–160MHz, and for the

sphere at 208MHz. Our results support R€oschmann�s
viewpoint that the brightening artifact is essentially di-

agnostic of true dielectric resonance, and that this ap-
pellation has significance beyond the purely semantic.

Finally, given the importance of the reciprocity

principle [15–17] in this type of calculation, we append a

brief derivation of the familiar Hoult–Richards formula,

based upon an arbitrary Green�s function, and therefore

of quite general applicability, in the regimes of either

long or short wavelength.
2. Theory

We consider a long, lossy, dielectric cylinder, with an

alternating radiofrequency B1 field, uniform at infinity,

incident normal to the cylinder axis. The complex

wavevector k, inside the cylinder, is determined from:
k2 ¼ ixl0rþ x2ee0l0; ð1Þ

where r is the conductivity (in Siemens/M), the free

space permittivity and dielectric constants appear with

the subscript zero, the unadorned e is the relative di-

electric constant, and x is the angular frequency of the
applied field. Then for a pair of linearly polarized exci-

tation fields, applied along the x and y coordinate axes

(and indexed by superscripts 1 and 2, for reasons which

will emerge), the vector potentials of the response, inside

the cylinder are:

Að1Þðr;/Þ ¼ �2ezB
J1ðkrÞ sin/
kJ0ðkaÞ

; ð2Þ

Að2Þðr;/Þ ¼ �2ezB
J1ðkrÞ cos/
kJ0ðkaÞ

; ð3Þ

where the Js are bessel functions (of order zero and

one), a is the radius of the cylinder, r and / are cylin-

drical polar coordinates, B is the strength of the exciting

field component in the absence of the cylinder, and eZ is
the unit vector in the z direction. We will also make use

of the corresponding vector potentials for a spherical

phantom, subjected to the same incident fields as the

cylinder:

Að1Þðr; #Þ ¼ /
3B
2

sin#w1ðkrÞ
kw0ðkaÞ

; ð4Þ

Að2Þðr; #Þ ¼ /0 3B
2

cos#w1ðkrÞ
kw0ðkaÞ

; ð5Þ

where the wn are spherical bessel functions as given by

Sommerfeld [18], r and h are spherical coordinates, a is

now the radius of the sphere, and / the conventional

/-directed unit vector in spherical coordinates, from
which /0 is obtained by a rotation of p=2 of the angle h.
While the underlying boundary value problem has been

treated elsewhere in the NMR literature [2,8,19,20] the

present formulae are obtained by transformation of

Smythe�s result for a conductive, permeable sphere [21];

i.e., Smythe uses k2 ¼ ixl0r, rather than our ixl0rþ
x2ee0l0 [cf. Eq. (1)].

Note that both sets of potentials, the cylindrical and
the spherical, have denominators consisting of zero-or-

der bessel functions whose arguments are the products

of a wave vector and a radius. In the case of zero con-

ductivity, the zeroes of the these bessel functions lie di-

rectly on the real axis; while as conductivity increases,

they are progressively displaced along the imaginary

axis; as such they may be said mathematically to con-

stitute a series of resonant denominators, so that the
dielectric samples may themselves be thought of as ex-

hibiting resonant behavior, including, in the limit of

high conductivity, over-damping.

For a pair of linear exciting fields, applied in space

and time quadrature, so as to produce a positive sense



Fig. 1. Geometry for calculation of vector potential in the sphere. The

plane labelled A is the diametral transaxial (or image) plane, inscribed

in the sphere; the plane B is one member of an infinite family, whose

members are generated by simply displacing plane B forward or

backward along the direction of its normal. These planes intersect the

surface of the sphere in a family of circles; and from each of the circles

we may generate a further infinite family of circles by considering all

circles parallel and coaxial, and lying inside the sphere. These circles

define the locus of the unit / vector in spherical coordinates; and each

of them intersects the plane A at normal incidence, as claimed in the

text; but this holds only for A a diametral plane.
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for the rotating field, the time-dependent vector poten-
tial of the response becomes:

A ¼ realf½Að1Þðr;/Þ þ iAð2Þðr;/Þ� exp ixtg
¼ ½Að1;ReÞ � Að2;ImÞ� cosxt � ½Að1;ImÞ þ Að2;ReÞ� sinxt;

ð6Þ

where the superscripts 1 and 2 identify (as above) the

source of excitation, and the real and imaginary

components of the potentials are indicated with the

additional superscripts, Re and Im. The time quad-
rature shift of Að2Þ is provided by the factor i; and,

inasmuch as the argument of the exponential is always

positive by convention, the sense of the rotation is

reversed by switching from i to �i; as in Að1Þ � iAð2Þ;

the reversal does not require complex conjugation of

the potentials (or their resulting fields. Finally, in free

space, or at sufficiently low frequency, the quasi-static

vector potential may be written in cartesian coordi-
nates as

AðquasiÞðx; yÞ ¼ ezBRefðy þ ixÞexp ixtg; ð7Þ

the curl of which is easily seen to give the positive sense

to the B field rotation.
Although the vector potentials A are given in curvi-

linear coordinates, we evaluate them on a rectangular

grid, and, for the purposes of computation, differentiate

numerically. This is particularly simple in cylindrical

coordinates, where A points always along the cylinder

(i.e., the z) axis, and the components of its curl (i.e., of

the B1 field) lie always in the transverse plane. In the

more complicated case of the sphere, the vector poten-
tial points along / (or /0), which is chosen to circulate

about the polarization axis of the corresponding B1.

Fig. 1 illustrates the geometry, that of a transaxial image

plane (labelled �A�) passing through the center of a

spherical sample, itself centered at the origin of spherical

coordinates. An orthogonal diametral plane, labelled B,
is also inscribed in the sphere; its perimeter is an ex-

emplary circulation path of the vector / as shown by the
arrow head. The key point, explained in detail in the

figure legend, is that / in this model, crosses the image

plane always at normal incidence. The mathematical

consequence is that all components of the curl of A (i.e.,

the B1 field) will lie flat in the image plane. This sim-

plifies the numerical coding, and insures that there can

be no objection, formally, to writing all fields as a pair of

rectangular components of the curl. For a complex

vector potential A, this actually results in four compo-

nents of B1 inside cylinder or sphere, corresponding to

directions x and y, and (per Eq. (11) below) to phase

shifts of 0 and p=2:

B11 ¼ curlx½Að1;ReÞ � Að2;ImÞ�;
B12 ¼ curlx½Að1;ImÞ þ Að2;ReÞ�; ð8Þ
B21 ¼ curly ½Að1;ReÞ � Að2;ImÞ�;
B22 ¼ curly ½Að1;ImÞ þ Að2;ReÞ�: ð9Þ

Note that the B fields are spatially inhomogeneous, due

to the complex nature of the vector potential; and that a

source, linearly polarized at infinity in free space, can

produce, at different points within the dielectric sample,

orthogonally directed B fields (ergo the indices 1 and 2,

rather than x and y). It is also true in general for

quadrature excitation, that the fields will exhibit (at

certain points in space) elliptic polarization; but it is the
circularly polarized component that is required for im-

age calculations [12], and so must be projected out. This

is expediently done for quadrature excitation by writing

the usual NMR radiofrequency Hamiltonian and

transforming to the rotating frame [22]. Beginning with

Hrf in units of the reduced Planck constant:

Hrf ¼ x�h½IxBx þ IyBy �; ð10Þ
where the real, time dependent, cartesian components of

B1 are given in matrix form as:

Bx

By

� �
¼ B11 B12

B21 B22

� �
cosxt
� sinxt

� �
ð11Þ

we next re-express all spin operators in the spherical

tensor basis (e.g., Ix ¼ Iþ þ I�Þ, and all trigonometric
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factors as sums of complex exponentials. Then, trans-
forming the spin operators according to:

I�ðtÞ ¼ exp�ixtI� ð12Þ
and retaining only terms at zero frequency, one arrives

(after reverting to cartesian components for the opera-

tors) at the transformed radiofrequency Hamiltonian in

the rotating frame:

HT
rf ¼ x�h½IxðB11 � B22Þ þ IyðB12 þ B21Þ�; ð13Þ

where the spin operators are now expressed in the ro-

tating basis, and their coefficients are the corresponding

circular components of the rotating field. These field

components are of course all real, given the requirement

for a real Hamiltonian in whatever frame of reference.

Other methods of obtaining field components stationary

in time, such as simple removal of the time factor

exp ixt, or projection with the unit spherical basis vector
ð1=

ffiffiffi
2

p
Þfex þ ieyg would allow for the possibility of

complex fields—useful in themselves, but inappropriate

to the rotating frame in magnetic resonance. Abragam

gives a clear discussion of rotating coordinates and

transformations, although without the complications of

a lossy dielectric medium [23].

For a small angle Gradient Recalled Echo experi-

ment, the image intensity I is proportional to the
squared magnitude of the B1 field in the rotating frame;

and we have simply:

I � jB11 � B22j2 þ jB12 þ B21j2; ð14Þ

where I is the image intensity, the tilde indicates the

relationship of proportionality, and the square brackets

indicate the magnitude of the quantity within. As noted
above, the field components in Eq. (13) are calculated

directly by numerical differentiation of the vector po-

tentials, a multiplier is subsequently applied to scale the

image for display.

The model of the cylindrical dielectric is capable of

elaboration, and the excitation by an external field deus

ex machina can be replaced by a two-dimensional

shielded resonator (e.g., of bird cage type). This is re-
alistic for a resonator of sufficient length, where end

effects may be ignored—a condition found to be justified

a posteriori, in the agreement we shall present between

simulation and experiment. Then the boundary value

problem for the empty antenna (i.e., absent the dielectric

load) is that of one or more axial conductors inside a

conductive cylinder, yielding solutions of TEM charac-

ter; that is whose wave potentials satisfy a two-dimen-
sional Laplace equation. Similar models have found

successful application in the study of the mode struc-

tures of cylindrical resonators [24–26]. For a highly

multipedous bird cage (say of 16 legs or more) the cal-

culated images and flux profiles are virtually indistin-

guishable from those given by our simpler model,

despite the presence of higher order bessel functions
(cf. Appendix A), whose contribution (if it appears at
all) is seen only at the periphery of the image.

This enclosed cylinder model also affords a straight-

forward calculation of the Q or quality factor of the

conductively damped dielectric cylinder, considered it-

self as a resonator. We follow Collin�s definition [27] of

the total Q

Q ¼ x0ðW1 þ W2Þ
ðP1 þ P2Þ

; ð15Þ

where W1 and W2 are the stored energies (averaged over

a resonant cycle) inside and outside the dielectric, P1
and P2 are the dissipated power inside and the radia-
tive loss, and x0 is the resonant frequency. The aver-

age internal and external electrical energies are given

by the appropriate spatial integrals of the squared

modulus of the electric field E, as ðee0=4Þ
R
jEj2 dV ,

where e is the relative dielectric constant. The Maxwell

equations for an undamped, undriven resonator have

propagating solutions only at eigenfrequencies; and it

may be shown [28] when the field is confined to a
conductive enclosure (as is the case here) that the

electric and magnetic stored energies are equal. Note

that this applies to the sum of energies in Eq. (15)

above, not to the internal and external components

individually. Since the sum of electric and magnetic

energy of the undamped resonator is conserved, it

must therefore be equal to twice the electric energy

discussed above. Given the character of the fields, and
the large disparity in relative dielectric constants inside

and outside the cylinder—a factor of 80 in the present

case—it can be shown, by direct integration of the

fields, that great bulk of the electric energy—over

99%—is stored inside. The problem of setting integra-

tion limits for the external energy noted by Richtmeyer

[29], does not occur here, due to the presence of the

shield. The rms dissipated power in the dielectric is
(r=2Þ

R
jEj2 dV , where r is the conductivity, and the

integration is over the interior of the dielectric. It is

shown in Appendix A that the radiative dissipation

due to induced shield currents is negligible in com-

parison to this in all cases of interest to us; therefore

the total Q reduces to the simple expression x0ee0=r.
Since the reasoning given above depends upon

equality of stored electric and magnetic energies, which
is easily justified only for the undamped resonator, we

have studied the energy distribution numerically, and

find (within the accuracy of our computations) that the

equality holds, within 2–3%, for the conductively

damped resonator, to Q values of about 10, where the

resonances are still fairly well separated. Equality breaks

down at very strong damping (Q6 3) when the overlap

of neighboring resonances becomes significant, and the
calculation for an uncontaminated mode is no longer (in

any obvious way) possible. Given our success in using Q
as a figure of merit, we believe that this breakdown is



Fig. 2. Above, experimental gradient recalled proton image (20� flip

angle) at 3.0T, (A) and profile, (B) of cylindrical phantom, radius

9.25 cm, filled with 0.05 aqueous NaCl; below (C) and (D), computer

simulations of same, at 128MHz, with e ¼ 80 and r ¼ 0:5.
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due solely to the overlap of neighboring modes, and not
to a re-distribution of energy within a particular mode.

We shall also require the Q factor for a dielectric

sphere in free space. The application of a shield by an-

alytical means poses difficulties over and above those

which occur in cylindrical geometry. The situation is

also complicated by the existence of different choices for

the scattered potentials and the boundary conditions,

which offer an array of trade-offs among simplicity, ease
of calculation, and rigor. We consider three cases: (i) the

resonant sphere in free space emitting a quasi-static

(non-radiative) field, (ii) the resonant sphere radiating

into free space, and (iii) the sphere inside a spherical

conductive shell. All three are characterized by their

secular equations, which we give in Appendix A. The

potentials for the non-radiating sphere (our first case),

here written per tesla, are a sin hw1ðkrÞ inside the sphere
and a3 sin hr�2 outside. For a radius a of 8 cm the res-

onant frequency is �208MHz, corresponding to a free

space wavelength of �70 cm. While the integral of the

scattered electric flux does not vanish at infinity, a

comparison of the energy integrals inside and outside

the sphere shows �2.5% of the energy to be stored

outside; a conductive surface placed at infinity has

therefore but small effect on energy balance, while al-
lowing us to good approximation to to invoke equality

of electric and magnetic stored energies inside the

sphere. In fact we will ignore the energy outside. Fur-

thermore, the Q factor calculated for the radiating

sphere (case (ii) above, also cf. Appendix A) is 110—an

insignificant loss in comparison to that due to the large

conductivities we shall deal with. In consideration of

these factors for the lossless dielectric sphere, we con-
clude that the Q of the lossy sphere [per Eq. (15)] may be

written, to at least 5% accuracy, as x0ee0=r regardless of

the radiative or non-radiative nature of the external (or

scattered) field.

The shielded sphere is also of practical interest, since

an RF shield of some sort is always present about the

sample in a high-field clinical MR scanner. The equality

of stored electric and magnetic energies automatically
applies here. For a shield radius corresponding to that

of a typical head resonator (15–18 cm) the secular

equation may be solved numerically to show that the

perturbation of the resonant frequency is about 5%. We

therefore conclude that the majority of electric energy is

still stored the dielectric, and that our above-given ex-

pression for Q still holds.

Another significant point emerging from these dis-
cussions concerns the choice of scattered field for the

sphere irradiated by a uniform magnetic field. As noted

in Section 4 below, the electromagnetic field produced

at the sample by a typical imaging resonator has, in fact,

essentially quasi-static, and (to large degree) pure

magnetic character, even at high frequencies. This jus-

tifies the choice of the exciting fields in Eqs. (2)–(5).
Matching of the boundary condition in this case re-
quires also a quasistatic field. We will use this require-

ment below in the calculation of flux plots for the sphere

under excitation.

Finally we shall employ the vector potential for a

sphere irradiated by a surface coil, which has also been

treated elsewhere in the NMR literature [19,20], and

which is derived in its present form (by means similar to

those described for Eqs. (4) and (5)) from a formula due
to Smythe [21]:

A ¼ /
l0I sin a

2

X1
n¼1

ða=cÞnð2nþ 1Þ

� P 1
n ðcos aÞP 1

n ðcos#ÞwnðkrÞ
nðnþ 1Þkawn�1ðkaÞ

: ð16Þ

Here a is the angle subtended from the center of the

sphere to the periphery of the surface coil, c is the length
of the chord defining a, the P s are associated legendre

polynomials, and other symbols have their earlier

meanings. The inducing field of the surface coil is treated

quasi-statically, while the full wave Maxwell equations

are solved inside the sphere.
3. Results

Figs. 2A and B show the observed gradient echo

image, in the transaxial plane, together with its profile,

recorded at 128MHz (B0 of 3.0 T) for a cylindrical jug of

radius 9.25 cm, filled with 0.05M aqueous sodium

chloride. Figs. 2C and D give the corresponding results

for the theoretically calculated image, using the electri-

cal parameters with e ¼ 80, and r ¼ 0:5 siemens/M.
Note that the overall appearance of the experimental



Fig. 4. Time exposures of CCW rotating flux plot for quadrature ex-

citation of lossy dielectric cylinder, at 128MHz, with e ¼ 80 and

r ¼ 0:5. The contours are calculated from Eq. [6] at various values of

the time. Since the vector potential points out of the viewing plane, its

iso-contours are in fact the flux lines traditionally used to represent the

magnetic field.
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image is well reproduced by the theory, particularly the
up-tick in intensity at the periphery. The failure to ob-

tain more perfect quantitative agreement between sim-

ulated and experimental intensity ratios (peak/wings) is

ascribed to partial saturation of the magnetization at the

center of the phantom, due to the increased RF field

strength there (vide infra). While the images here were

taken with a lumped element TEM resonator (which is a

low pass structure), comparable results are obtained
with a high-pass bird cage resonator; in fact, we are

unable to distinguish the results of different volume

resonators based solely upon the brightening artifact.

The brightening was clearly apparent when the phantom

was imaged with a third resonator, a TEM having dis-

tributed capacitance at multiple sites along each ele-

ment. Similar results for the same phantom, imaged now

at 4.0 T, are given in Fig. 3. Note particularly that the
theoretical images reproduce the increase (relative to

3.0 T) in the uptick of intensity, at the periphery of the

phantom. The asymmetry observed at 4.0 T is ascribed

to uneven reactive loading on opposite sides of the coil,

rather than uneven coupling at the drive ports. Pre-

liminary calculations and experiments have been given

to support this explanation [30].

Some insight into the origin of the brightening is
gained from Fig. 4, which depicts snapshots in a time

sequence of the rotating RF flux contours in the labo-

ratory frame—calculated directly from the iso-contours

of Eq. (6), and given for the positive sense of rotation.

The plots exhibit a characteristic screw propellor form
Fig. 3. As in Fig. 2 above, except images taken at 4.0 T, and simula-

tions done at 170MHz. The asymmetry of the experimental image and

profile is due apparently to distortion of the RF homogeneity, prob-

ably due to reactive loading of resonator by the phantom, as noted in

the text. For reference, the radiofrequency polarization planes (defined

by the drive ports of the coil) are parallel to the (vertical and hori-

zontal) figure axes. Inasmuch as the phantom is roughly (but imper-

fectly) centered in the coil, the drive axes intersect at a point slightly

above (we estimate 2–3 cm) its center. The two drive ports are located

above and to the viewer�s left.
[22], with the flux lines bunched at the center of the

cylinder and dispersed towards its periphery. The re-

gions of high flux (and high field) correspond, obviously,

to higher intensity of the image, with the effect being

averaged over the rotation of the contours.

It is instructive to perform similar calculations of flux

plots and images for a spherical phantom, using the

vector potentials of Eqs. (4) and (5), particularly near a
resonant condition of the sphere (of 8 cm radius), as we

pass through the condition (well known in the theory of

oscillation) of critical damping, i.e., Q factor ¼ 0.5.

Fig. 5 gives a pair of time-course snapshots, at 208MHz,

for each of two conditions: underdamped, Q ¼ 0:9
(e ¼ 80, r ¼ 1) and overdamped, Q ¼ 0:3 (e ¼ 80,

r ¼ 3). The difference is marked. Flux is drawn in and

concentrated at the center of the underdamped sphere;
flux is expelled from the center of the overdamped

sphere, and concentrated at the periphery.
Fig. 5. Time exposures of CCW rotating flux for quadrature excitation

at 208MHz of a lossy dielectric sphere, of radius 8 cm, viewed in a

diametral plane, for two conditions of damping: (i) above, left and

right, sphere underdamped, Q ¼ 0:9 (e ¼ 80, r ¼ 1); and (ii) below, left

and right, sphere overdamped, Q ¼ 0:3 (e ¼ 80, r ¼ 3). Referring to

Fig. 1, the vector potential in the diametral plane points perpendicular

to that plane (the viewing plane) so that the iso-contours of vector

potential are true flux lines, as explained in the legend to Fig. 4.



Fig. 7. Plots of the inverse resonant denominator, 1=jw0ðkaÞj, for the
sphere of dielectric constant e ¼ 80, at various values of the conduc-

tivity: r ¼ 0:3 (vertical triangles), r ¼ 0:5 (sloping triangles), r ¼ 0:8

(circles), r ¼ 2 (diamonds). The first three values of r represent an

underdamped condition for the resonances in question; the last an

overdamped condition. Refer to the text for further discussion.
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Similar effects are shown in Fig. 6 for the model of the
dielectric cylinder enclosed in a shielded resonator, in-

troduced above. The dimensions of the cylinder and

resonator are chosen to match our experimental condi-

tions. The frequency—157MHz—is the resonant fre-

quency of the dielectric inside the resonator (cf.

Appendix A), and the conductivities—0.7 (above) and

2.0 (below)—correspond to Q values of 1.0 and 0.35. The

behavior of the flux contours upon passage through
critical damping (Q ¼ 0:5) is comparable to that ob-

served for the sphere in Fig. 5.

The passage through critical damping also appears in

plots of the resonant denominators versus frequency, at

different conductivities corresponding to under-damped

and over-damped conditions. This is shown in Fig. 7,

where we plot the inverse magnitude of w0ðkaÞ [cf. Eqs.
(4) and (5)] from 1 to 500MHz, at four values of the
conductivity r. For the rs of 0.3, 0.5, and 0.8 siemens/M,

distinct peaks resembling resonant responses (and shar-

per at smaller r) are seen at about 210 and 420MHz. The

behavior for r ¼ 2 siemens/M (overdamped in this fre-

quency range) is qualitatively different, exhibiting no

resonant like responses, but only a steady decrease from

the frequency origin. Instructive examples of this type of

calculation have also been given elsewhere [8].
Fig. 6. Similar to Fig. 5, but for dielectric cylinder inside a shielded

cylindrical resonator, and at two conditions of damping. Time expo-

sures of CW rotating flux for quadrature excitation at 157MHz of a

lossy dielectric cylinder, of radius 9.25 cm, viewed in a diametral plane,

for two conditions of damping: (i) above, left and right, underdamped,

Q ¼ 1:0 (e ¼ 80, r ¼ 0:7); and (ii) below, left and right, overdamped,

Q ¼ 0:35 (e ¼ 80, r ¼ 2). The cylindrical resonator is assumed to be

bird cage type with 16 elements on a bolt circle of radius 14.6 cm, and a

cylindrical shield of radius 17.7 cm. (This matches the dimensions of

our experimental resonator.) The current distribution is assumed to be

sinusoidal. As in earlier figures of this type, the vector potential points

perpendicular to viewing plane so that the iso-contours of vector po-

tential are true flux lines, again, as explained in the legend to Fig. 4.
Resonant effects are also expected for a sphere irra-

diated by a surface coil. Examination of Eq. (16) (and

comparison with Eq. (4)) shows that the vector potential
Fig. 8. Time exposures of flux contours for excitation of a lossy di-

electric sphere of radius 8 cm by a surface coil, at 208MHz. The ar-

rangement is similar to Fig. 5 as regards viewing plane and electrical

parameters. The surface coil is a circular loop of radius 2 cm, lying just

to the right of the sphere with its plane perpendicular to the paper.

While the coil itself out of sight, its flux lines are clearly seen, ema-

nating from the right of each sub-figure. The distance from the center

of the sphere to any point on the periphery of the coil is 12 cm. The two

conditions of damping are: (i) above, left and right, sphere under-

damped, Q ¼ 0:9 (e ¼ 80, r ¼ 1); and (ii) below, left and right, sphere

overdamped, Q ¼ 0:3 (e ¼ 80, r ¼ 3). The view is of a diametral plane;

the flux contours therefore represent true field lines (cf. legends to Figs.

4 and 5 above).



Fig. 9. Comparison with results of [8]. Calculated small tip, gradient

recalled, transaxial image with volume quadrature excitation and re-

ception, at 400MHz, for a dielectric sphere, radius 10 cm, (e ¼ 80,

r ¼ 0:5).
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in this case is a weighted sum of terms, each containing

the (potentially) resonant factor

fn ¼
P 1
n ðcos#ÞwnðkrÞ
wn�1ðkaÞ

: ð17Þ

In the vicinity of 200MHz, only the n ¼ 1 term shows
resonant behavior, but on this basis alone, it produces

noticeable effects upon passing through critical damp-

ing. This is seen in Fig. 8, which repeats the calculations

of Fig. 5, but with irradiation by a surface coil rather

than by a uniform radiofrequency B field. Two points

emerge: the first is that at high, but still sub-critical

damping, flux is drawn in towards the center of the

sphere, while in comparison, at overdamping, flux is
visibly expelled from the center. The second is that even

under highly damped conditions, flux penetrates (albeit

weakly) all the way through the sphere.

Finally, since our method of solution for the vector

potential in the sphere differs considerably from that in

the recent magisterial treatment by Hoult [8], it is

worthwhile to demonstrate the equivalence of the two

approaches, by repeating a calculation of his, for a
sphere of 10 cm radius, at 400MHz, with e ¼ 80 and

r ¼ 0:5. Our Fig. 9 gives the image and profile, which

will be seen to reproduce virtually exactly the corre-

sponding result of [8, Fig. 4].
4. Discussion

As magnetic resonance imaging pushes towards

higher static fields and frequencies, the importance of

electromagnetic wave phenomena in vivo has forced it-

self upon our attention, and has attracted a large com-

munity of investigators. These divide into two opposing

yet complementary camps: those who solve the Maxwell

equations by purely numerical means, and those who

favor (at least partially) an analytic approach. Among
the analysts, some of the pioneers of the subject have

treated the cylindrical resonator with wave-guide mod-

els, which emphasize the importance of the axial prop-

agation constant and the interaction of the resonator
with the sample to be imaged [4,5,7]. Others (whom the
present writer has followed) have opted for simpler

models in which axial propagation does not figure, and

where the resonator is either ignored [12], or does plays

at most a minor role. Our success in performing accurate

image simulations, with what amounts to a two-di-

mensional calculation, leads us to devalue any specific

rôle for electromagnetic propagation or retardation ef-

fects in the irradiating resonator per se, in the formation
of the brightening artifact. For example, the current in a

high Q coaxial resonator, even one which spans several

wavelengths, has only two phases: 0 and p, which is to

say, that at resonance, all metal antennas behave simi-

larly, regardless of electrical length.

The simplicity of our analytical model, particularly the

use of a quasi-static field outside the phantom, may also

be justified on a priori grounds, For a long shielded bird
cage, or TEM resonator, the electromagnetic potentials

in the empty resonator, well away from the periphery,

must satisfy a two-dimensional Laplace equation; that is

to say, they must be indistinguishable from quasistatic

(or, for that matter, static) potentials. Similar reasoning

may well apply to unshielded resonators in solenoidal

imaging magnets, fitted (as most nowadays are) with an

RF shield to isolate the gradient set. Furthermore, it is
well known on circuit theoretic grounds that cylindrical

resonators (of the bird cage or TEM type) possess a vir-

tual ground plane, perpendicular to the cylinder axis, and

halfway along its length (the meridian plane). All irro-

tational electric fields must vanish in this plane; leaving

(in our model) only the solenoidal Faraday�s law field.

That this field in itself carries an insignificant portion of

the net circuit energy is shown by the success of (suitably
parametrized) circuit models in predicting the mode po-

sitions of cylindrical resonators, even to frequencies ap-

proaching 400MHz [24]. It is worthwhile remembering in

this context that electric and magnetic energy storage, in

a resonator, are, unlike that in free space, spatially lo-

calized. It is probably fair to say that most electric energy

storage in typical NMR resonators (even for large reso-

nators at high fields) is localized around the capacitance,
even if that is distributed rather than lumped. This also

suggests the inapplicability to NMR problems of scat-

tering models in which the incident field is free space

TEM, i.e., having equal storage of electric and magnetic

energy at any point in space.

Our results also point strongly to the idea that center

brightening is a direct result of dielectric resonance; but

given the general complexity of conditions, that term
will require some qualification. Inasmuch as resonance

occurs generically within objects capable of supporting

wave phenomena, and having reflective boundaries, it is

more or less self evident that a sphere or cylinder of

dielectric constant 80 should support a resonance—given

that the impedance mismatch with free space is on the

order of 9, leading to a reflection coefficient on the order
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of 0.8. Two competing effects are at work: here: the high
dielectric constant tends to focus the flux in the center of

the irradiated object, while increasing conductivity tends

to the push the flux towards the periphery—essentially a

skin effect. The relative importance of each of these

tendencies is measured by the Q or quality factor of the

dielectric object. The field focussing effect predominates

at sufficiently high Q, and the skin effect at sufficiently

low; the crossover point between �sufficiently high� and
�sufficiently low� is that of critical damping, i.e., Q ¼ 0:5.
The fact that flux focusing is observed at frequencies far

removed from the center of the dielectric resonance

appears to us essentially as an instance of a resonator

driven, so to speak, in the wings of its response. This is

particularly so for the low (but still underdamped) Q
factors of �1, occurring in many cases of interest. The

sphere excited by a uniform field shows these effects very
clearly; the sphere excited by a surface coil less so. This

is in consequence of the sum of terms which describe the

surface coil. Still, in the case of high Q, on resonance,

the resonant denominator of the first term can be made

to dominate, leading to a result not much distinguished

from that of excitation with a uniform field.

We may elaborate these points. In the simplest in-

stance, the uniform B field excites the pure TE110 mode of
the dielectric sphere; and at high Q, where the imaginary

component of the vector potential contributes little, the

field intensity undergoes a cycle of growth and decay,

while the field direction is unchanged. That is to say, the

time course resembles that of a standing wave on a string,

which can be written as the product of a spatial function

and a time varying sinusoid. As damping increases

however, the imaginary contribution grows, and the field
now varies in both intensity and direction, over the pe-

riod of resonance. Mathematically, the flux assumes the

form of our Eq. (6) (vide supra) and can no longer be

even approximately factored into a space and a time

varying component. Qualitatively then, the moderately

damped sphere requires a somewhat expanded notion of

what, in the simplest instance, is meant by resonance; but

quantitatively, the case may be unambiguously judged by
the demarcation point of critical damping.

The sphere driven by a surface coil presents a more

complex case, in which simultaneous excitation of a series

of modes yields a sort of wave packet, which propagates

across the sphere periodically at the drive frequency. The

exact character of the packet is determined by the values

of the individual mode functions at the drive frequency. If

that mode is underdamped whose resonant frequency
falls nearest that of the drive, we may say that dielectric

resonance obtains, and predict that flux will be drawn

towards the center of the sphere. This can occur even as

the excitation wavefront appears to propagate across the

sphere. Nonetheless, we must emphasize that our explicit

treatment has been restricted to drive applied in the vi-

cinity of low order modes of the sphere, e.g., n ¼ 1; 2, in
Eq. (17). The situation for excitation of very high order
modes (e.g., n > 10) may soon arrive at the point where

interpretation is difficult, though we believe that the Q
factor would still be a useful guide.

Finally it is worth noting, that despite our frequent

usage of complex variables, all actual RF potentials and

fields are reduced to real quantities. This avoids the ap-

pearance of imaginary cartesian field components in the

rotating frame, which, as noted, would lead to a complex
and therefore non-physicalHamiltonian. This does not of

course preclude the writing of the Hamiltonian as a con-

traction of spherical tensors, in which individual complex

elements are always summed with their conjugates, lead-

ing in the end to a purely real result. See again Abragam�s
expression for the interaction energy of a spin with a cir-

cularly polarized radiofrequency B field [23].
5. Experimental section

All images were acquired on General Electric scan-

ners, at static fields of 3.0 or 4.0 T, using gradient re-

called echoes with spoiling, at a tip angle of 20�; the echo
and repetition times were 6.5 ms (TE) and 500 to 1000

ms (TR). The phantom solutions were reagent grade
NaCl in tap water. All TEM resonators employed dis-

crete element (as opposed to transmission line) compo-

nents, as described elsewhere [31]; further details of

construction and geometry have also been given [32,33].

The TEM resonators for 3.0 T were end capped i.e.,

bucket shaped, as was the 3.0 T bird cage resonator; the

4.0 TEM resonator was cylindrical with no end cap. The

bird cage circuit was of high-pass type.
All electromagnetic and image simulations were done

using scripts written for the purpose at hand in Matlab

5.2 for Macintosh (Mathworks). Our method of image

simulation was developed and validated for cylindrical

resonators having quadrature excitation and reception,

and is not advertised for use in other contexts.
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Appendix A

We here describe our solution of the two-dimensional

boundary value problem for a shielded cylindrical res-

onator (e.g., of bird cage type), loaded coaxially with a

lossy dielectric cylinder. Our result is similar to that gi-
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ven in a useful report by Spence and Wright [34], which
appeared during the review cycle of the present work,

although our assumptions and methodology differ from

theirs at certain key points.

We have given above, in the body of the main text,

the rationale and evidence for assuming the field in the

empty shielded resonator to be of TEM character.

Briefly, the presence of axial conductors enforces the

TEM condition. The axial and transverse field boundary
value problems are then perfectly separated, and the

axial propagation constant (if it appears at all) is absent

from the argument of the radial wave function. This is in

contrast to the case of a perfectly hollow waveguide,

which demands TE or TM boundary conditions, for

which the axial and transverse problems are not de-

coupled, and the axial propagation constant is calcu-

lated in relation to the cutoff frequency, and appears
explicitly in the argument of the radial wave function.

With the introduction of the dielectric load, we must

consider separately the filled and unfilled regions inside

the shield. We assume that the two-dimensional Laplace

equation continues to hold good in the unfilled region;

while in the filled region a two-dimensional Helmholtz

equation is needed, to account for the electrical prop-

erties of the load, as embodied in a radial wave vector.
According to the usual theory for dielectrically loaded

waveguides, axial propagation (inasmuch as it enters

our particular problem at all) must be the same in both

the filled and empty regions [35].

We first solve the primordial boundary value problem

of a single line current irradiating the load. The solution

for the entire resonator is then built up by azimuthally

displacing the primordial solution, weighting according
to known (sinusoidal) current distribution, and adding.

The vector potential of the line current is given by a

two-dimensional Green�s function; the shield is modelled

by an opposed image current [36]. In the fully realized

solution, the primary and shield currents reside on a pair

of bolt circles, of radii designated r01 and r02, whose

geometric mean rs is the shield radius. A scattered po-

tential is then constructed whose form automatically
satisfies the boundary condition at the shield, regardless

of any weighting coefficient. The induced potential in-

side the dielectric is determined by need for a non-sin-

gular solution of the two-dimensional Helmholtz

equation. The excitation, induced, and scattered poten-

tials all meet at the cylinder radius, where they must

satisfy the twin boundary conditions of continuity, and

continuity of the azimuthal magnetic field. The mathe-
matical details are as follows.

The vector potential for excitation by a pair of op-

posed line currents, at radii r01 and r02 (vide supra) is:

Asource¼ ezl0

2p

X1
n¼1

1

n
r
r01

� �n�"
� r

r02

� �n�
cosn#þ lnr02� lnr01

#
;

a< r< r01; ðA:1Þ
Asource ¼ ezl0

2p
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n
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r

� 	n
�

� r
r02

� �n�
cos n#

þ ln r02 � ln r

#
; r01 < r < rs; ðA:2Þ

where a is the cylinder radius, l0 us the free space per-

meability, and other symbols have been defined in the

main text. The induced potential (inside the cylinder)

and the scattered (outside) are

Acyl ¼ ezl0

2p

X1
n¼1

BnJnðkrÞ cos n#
"

þ B0J0ðkrÞ
#
; r < a;

ðA:3Þ
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� 	n
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#
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a < r < rs; ðA:4Þ

where An and Bn are given by
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1
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A0 ¼ B0kaJ 0
0ðkaÞ; ðA:7Þ

B0 ¼
ln r02 � ln r01

J0ðkaÞ � kaJ 0
0ðkaÞ ln a

: ðA:8Þ

The homogeneous equations (without the driving term)

are also of interest. For the principal mode (n ¼ 1) of

the cylinder in free space, the vanishing of the secular

determinant gives the condition J0ðkaÞ ¼ 0, which is

also the resonant condition in Eq. (2) of the main text.

For a lossless cylinder with e ¼ 80 and radius 9.25 cm
(as used in the text above) the resonant frequency is

�142.5MHz. For the enclosed cylinder model, existence

of a solution to the homogeneous equations requires the

condition

det
�fðrsaÞ

n � ðarsÞ
ng JnðkaÞ

nfðan�1

rns
Þ � ð rns

anþ1Þg kJ 0
nðkaÞ

" #
¼ 0 ðA:9Þ

be met. Using parameters which match the dimensions

of the shielded bird cage employed in this study (rods on



Fig. 10. Flux contours—at 142MHz (left) and 157MHz (right)—for the lossless dielectric cylinder (e ¼ 80) enclosed in a cylindrical resonator of bird

cage type, with 16 elements. Cylinder and resonator geometries as in Fig. 6 of the main text. The two frequencies here are the resonant frequencies of

the cylinder in free space (142MHz) calculated from Eq. (2) of the main text and and the resonant frequency inside the shielded resonator, shifted

upwards to 157MHz, as calculated from Eq. (A.9). Both are contoured at an interval of 0.05 full excursion, to illustrate to relative concentration of

flux in the phantom as true resonance is approached inside the shield; that is, below resonance, the current carrying rods of the resonator are clearly

visible, whereas at resonance, they disappear in this contour scheme. Exemplary rotating flux plots are also shown below; and in the inset (far right)

are given the flux patterns of the empty resonator (above) and of the scattered field alone (below) illustrating the matching of the boundary condition

at the shield. The color scheme is used to indicate the transition from positive (green) to negative (blue) values of the vector potential.

Fig. 11. Simulated gradient-recalled image image and profile, at

128MHz, for a sample of the same size and electrical properties as that

used in the calculations for Fig. 2, but inside the shielded resonator

whose dimensions equal those of the shielded bird cage used in our

imaging experiments (cf. Fig. 6, legend) as well as all other simulations.

Despite differing layout and aspect ratio, the intensity ratios (peak to

wings), as well as the qualitative features such as the location of in-

flexion points in profile, and peripheral uptick in intensity, are seen to

be essentially the same as for Fig. 2.
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bolt circle of radius 14.6 cm and shield radius of 17.7 cm)

we calculate a resonance frequency shifted upwards
from its free space value, to �157MHz—presumably

because the shield lowers the effective inductance.

Fig. 10 shows the flux contours for the cylinder-in-

resonator at both the natural free space (left) and the

upwardly pulled frequencies (center-right). Both are

contoured at an interval of 0.05 full excursion, to illus-

trate to relative concentration of flux in the phantom as

true resonance is approached; that is, below resonance,
the current carrying rods of the resonator are clearly

visible, whereas at resonance, they disappear in this

contour scheme. Exemplary rotating flux plots are also

shown below; and in the inset (far right) are given the

flux patterns of the empty resonator (above) and of the

scattered field alone (below) illustrating the matching of

the boundary condition at the shield.

Fig. 11 shows the simulated gradient-recalled image
image and profile, at 128MHz, for a dielectric cylinder—

of the same size and electrical properties as that used in

the calculations for Fig. 2—but now placed inside our

model shielded resonator. Despite some differences in

the layout, the results of Figs. 2 and 11 are seen to be

highly similar, as regards intensity ratios, upticks, lo-

cation of inflexion points, etc.—showing that the addi-

tion of the shield does not change the fundamentals,
even despite the upward frequency shift. Doubtless,

however, there could be found conditions (e.g., a low

loss sample near resonance in free space) where a larger

difference would be apparent.
The power dissipated in the walls of the RF shield, at
frequency x, per unit drive current applied, is (per meter

of axial extension):

P ðxÞ ¼ psðxÞN
2rs

X
n

n2jAnj2: ðA:10Þ

where sðxÞ is the frequency dependent surface resistance

(� 2:6� 10�7 �
ffiffi
ð

p
x=2pÞ for copper) N is the number

of resonator legs, and other symbols have been defined.

(Recall that An is dimensionless, sðxÞ has the units of

resistance, and the whole expression must be multiplied

by a length and the square of a unit current.) The Q
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factor arising from dissipation in the shield for a driven
coil (with dimensions given above) loaded with a cylin-

der of 0.05M aqueous saline, at 128MHz is about

3� 103. Since we are chiefly concerned with Q values in

the vicinity of critical damping, i.e., on the order of unity,

this radiative damping is for our purposes negligible.

Some related problems of the dielectric sphere are

also of interest. For the resonant sphere of radius a and

wave vector k [cf. Eq. (1)], emitting a quasi-static (non-
radiating) field into free space, the boundary value

problem of the TE110 mode reduces to the secular

equation:

det
w1ðkaÞ � 1

a2

kw0
1ðkaÞ 1

a2

� �
¼ 0; ðA:11Þ

which is solved analytically by w0ðkaÞ ¼ 0 (satisfied for

ka ¼ p). For a radius of 8 cm, and relative dielectric

constant of 80, the resonant frequency is �208MHz.

A modern treatment of the resonant sphere radiating

into free space, is given by Collin [27]. The secular

equation is for the TEn10: mode is

det
wnðkaÞ �hð2Þn ðk0aÞ
kw0

nðkaÞ �k0h0ð2Þn ðk0aÞ

� �
¼ 0; ðA:12Þ

where hð2Þn ðkrÞ is the spherical hankel function [37] of

degree 2 and order n, k0 is the free space wavevector, and
k is the wave vector inside the sphere, which is assumed

to embody zero conductivity, but which acquires a

damping factor due to radiation, as appears in the so-
lution. Collin obtains a Q of 140 (independent of radius)

for n ¼ 1, by an analytical approximation for the TE110

mode with relative dielectric constant e ¼ 86. We use a

numerical search algorithm to obtain for e ¼ 80 a res-

onant frequency of 205MHz and a Q of 110. In either

case, radiative losses are small.

While we shall shall not attempt an elaborate treat-

ment, the dielectric sphere inside a conductive spherical
shell offers an analytical approximation to the sphere

inside a bucket resonator (i.e., with cylindrical shield and

end cap, and open only at the front). For a and b the radii
of the sphere and shell, and k and k0 the wave vectors in
the dielectric and in free space, the resonant frequency of

TE110 mode is given by the secular equation:

det

w1ðkaÞ �w1ðk0aÞ �y1ðk0aÞ
kw0

1ðkaÞ �k0w
0
1ðk0aÞ �k0y01ðk0aÞ

0 w1ðkbÞ y1ðkbÞ

2
4

3
5 ¼ 0; ðA:13Þ

where y1ðkrÞ is the spherical Neumann function [37] of

order 1, and other symbols have been defined. While this

is a traditional loaded cavity problem, in fact, either the

shield radius or the dielectric constant of the load may

be made to dominate the determination of the resonant

frequency, depending upon the relative values of the

radii a and b. For the dielectric sphere we consider, with
a ¼ 8 cm, and a reasonable shield radius b ¼ 15 cm, the
frequency is dominated by the sphere and, has virtually
the same value as the lossless dielectric sphere in free

space: 208MHz.
Appendix B. Generalized reciprocity in NMR

Insko et al. [17] have recently shown that the quasi-

static free space Green�s function, 1=r, can be replaced

by that for the Helmholtz equation, expðikrÞ=r, without
affecting the general form of the Hoult–Richards [15]

reciprocity formula. However, it applies only to cases

where the electrical properties of the sample are uniform

throughout space, or where the resonator is actually

immersed in the sample material; that is to say, it does
not explicitly address the question of boundary condi-

tions between media of differing properties, which are

typical of NMR experiments. Inasmuch as one may

posit the existence of a generalized Green�s function

which satisfies all boundary conditions, it is straight-

forward (virtually tautological) to cast the reciprocity

formula in such terms. Specifically, for Green�s function
Gðr; r0) we express the flux / as:

/ ¼
Z

ds

Z
Mðr0Þ � gradGðr; r0Þd3r0; ðB:1Þ

where Mðr0Þd3r0 is the local dipole moment, the line

integral is over the current path of the NMR coil, and

the equation is obtained from the quasistatic result for a

current loop [38], by substituting the generalized Green�s
function for 1=r. Then noting that:

B ¼ curl

Z
Gðr; r0ÞJðr0Þd3r0 ðB:2Þ

and that ds and Jdr are co-linear for filamentary cur-
rents, a rearrangement of the vector triple product im-

mediately recovers the Hoult–Richards formula, valid

under any conditions for which the nuclear magnetiza-

tion does not appreciably alter the net electromagnetic

free energy.
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